• Skip to primary navigation
  • Skip to main content
  • Skip to footer
Mycologics

Mycologics

Public health solutions inspired by Fungal Research

  • About
  • Partners
  • Sponsors

Search Mycologics

Activation of Aflatoxin Biosynthesis Alleviates Total ROS in Aspergillus parasiticus.

Anindya Chanda · October 14, 2018 ·

An aspect of mycotoxin biosynthesis that remains unclear is its relationship with the cellular management of reactive oxygen species (ROS). Here we conduct a comparative study of the total ROS production in the wild-type strain (SU-1) of the plant pathogen and aflatoxin producer, Aspergillus parasiticus, and its mutant strain, AFS10, in which the aflatoxin biosynthesis pathway is blocked by disruption of its pathway regulator, aflR. We show that SU-1 demonstrates a significantly faster decrease in total ROS than AFS10 between 24 h to 48 h, a time window within which aflatoxin synthesis is activated and reaches peak levels in SU-1. The impact of aflatoxin synthesis in alleviation of ROS correlated well with the transcriptional activation of five superoxide dismutases (SOD), a group of enzymes that protect cells from elevated levels of a class of ROS, the superoxide radicals (O₂–). Finally, we show that aflatoxin supplementation to AFS10 growth medium results in a significant reduction of total ROS only in 24 h cultures, without resulting in significant changes in SOD gene expression. Our findings show that the activation of aflatoxin biosynthesis in A. parasiticus alleviates ROS generation, which in turn, can be both aflR dependent and aflatoxin dependent.

Category iconPublications

Footer

Mycologics LLC

(973) 692-6843
North Carolina Office
2 Davis Dr.,
Durham, NC 27709
Maryland Office
321 Ballenger Center Dr.,
Frederick, MD-21703

Copyright © 2025 Mycologics · All Rights Reserved ·

 Website by Code the Dream & Tomatillo Design